DO NOW

Find the next number:

18

2500

Page 1

Arithmetic sequence - add a common difference (d) to find the next #

* LINEAR FUNCTION

Example: 2, 6, 10, 14, 18... d = 4

Find d and the next three terms.

6.
$$13, 8, 3, -2...$$
 $d = -5$

7.
$$21,121,221,321...$$
 $d = |00|$ $421,521,621$

32, 25, 18, 11... $\lambda = -7$ 8. 4,-3,-10

Page 3

Writing an arithmetic sequence explicitly (General Rule):

General Rule:

→ based on its location in the list Ex: 4th item

 $Q_n = Q_1 + (n-1)d$

 $a_n \rightarrow \text{general term}$ An is its location in the list $a_i \rightarrow i^{\text{st}}$ item in the list $a_i \rightarrow i^{\text{st}}$ item in the list $a_i \rightarrow i^{\text{st}}$ item in the list $a_i \rightarrow i^{\text{st}}$ occation in the list $a_i \rightarrow i^{\text{st}}$ occation in the list

Example: Given 2, 5, 8, 11, 14... d=3

$$Q_n = Q_1 + (n-1)d$$

 $a_1 = 3(1) - 1 = 2$

$$\alpha_n = 2 + (n-1)(3)$$
 $\alpha_2 = 3(2) - 1 = 5$

$$\alpha_2 = 3(2) - 1 = 5$$

$$a_n = 2 + 3n - 3$$

$$0.2 = 3(3) - 1 = 8$$

an=3n-1

9.4 Sequences and Arithmetic Sequences

sequence - list written in a given order * related by a numerical pattern

2 ways to define:

1. recursively - value is defined by the preceding value.

2. explicitly - definition from a general rule based on its location in the sequence.

Predict the next term of the sequence.

1.
$$1, 4, 8, 13, 19...$$
 2. $4, 16, 36, 64, 100...$ 10^{4} 10^{2} 10^{4} 10^{4} 10^{4}

Page 2

Writing an arithmetic sequence recursively: based on the item before it in the list

 $Q_n = Q_{n-1} + d$

 $a_n \rightarrow general$ term b_n is its location in the list

an - item before an

d → common difference

Example: Given 2, 5, 8, 11, 14...

 $a_n = a_{n-1} + d$

 $a_n = a_{n-1} + 3$

Page 4

9. Consider the arithmetic sequence: 6, 9, 12, 15.

a. Use the general rule to write the explicit formula and simplify.

b. Find the 9th and 27th terms of this sequence.

 $Q_n = 6 + (n-1)(3)$

 $a_n = 6 + 3n - 3$

an = 3n + 3 - explicit formula

b. $\alpha_{q} = 3(9) + 3$ $\alpha_{27} = 3(27) + 3$ $\alpha_{27} = 81 + 3$ $\alpha_{27} = 84$

Page 6

- 10. If an arithmetic sequence is defined recursively as $a_1 = 6$ and $a_n = a_{n-1} + 5$,
 - a. Find the common difference.
 - b. Write the general rule for a_n and simplify to the explicit formula.
 - c. Find the 14th term.

a.
$$d=5$$

b.
$$a_n = a_1 + (n-1)d$$

 $a_n = 6 + (n-1)(5)$
 $a_n = 6 + 5n - 5$
 $a_n = 5n + 1$

$$\boxed{\alpha_n = 5n + 1}$$

c.
$$\alpha_{14} = 5(14) + 1$$

 $\alpha_{14} = 70 + 1$
 $\alpha_{14} = 71$

Page 7

11. Write out the first four terms of an arithmetic sequence in which the 8th term is 24 and the 15th term is 10.

$$a_8 = 24$$
 $a_{15} = 10$
 $a_8 = 24$
 $a_{15} = 10$
 $a_1 = a_1 + (n-1)d$
 $a_1 = a_1 + (8-1)d$
 $a_2 = a_1 + (8-1)d$
 $a_1 = a_1 + (8-1)d$
 $a_2 = a_1 + (8-1)d$
 $a_1 = a_1 + (8-1)d$
 $a_2 = a_1 + (8-1)d$
 $a_1 = a_1 + (8-1)d$
 $a_2 = a_1 + (8-1)d$
 $a_1 = a_1 +$

Page 8

HOMEWORK

Worksheet - HW 9.4

Page 9